3.2.36 \(\int \frac {x^7}{(d+e x) (d^2-e^2 x^2)^{5/2}} \, dx\) [136]

Optimal. Leaf size=162 \[ \frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^4 (6 d-7 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x^2 (24 d-35 e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {(32 d-35 e x) \sqrt {d^2-e^2 x^2}}{10 e^8}+\frac {7 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^8} \]

[Out]

1/5*x^6*(-e*x+d)/e^2/(-e^2*x^2+d^2)^(5/2)-1/15*x^4*(-7*e*x+6*d)/e^4/(-e^2*x^2+d^2)^(3/2)+7/2*d^2*arctan(e*x/(-
e^2*x^2+d^2)^(1/2))/e^8+1/15*x^2*(-35*e*x+24*d)/e^6/(-e^2*x^2+d^2)^(1/2)+1/10*(-35*e*x+32*d)*(-e^2*x^2+d^2)^(1
/2)/e^8

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 162, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {864, 833, 794, 223, 209} \begin {gather*} \frac {7 d^2 \text {ArcTan}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^8}+\frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {(32 d-35 e x) \sqrt {d^2-e^2 x^2}}{10 e^8}+\frac {x^2 (24 d-35 e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}-\frac {x^4 (6 d-7 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^7/((d + e*x)*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

(x^6*(d - e*x))/(5*e^2*(d^2 - e^2*x^2)^(5/2)) - (x^4*(6*d - 7*e*x))/(15*e^4*(d^2 - e^2*x^2)^(3/2)) + (x^2*(24*
d - 35*e*x))/(15*e^6*Sqrt[d^2 - e^2*x^2]) + ((32*d - 35*e*x)*Sqrt[d^2 - e^2*x^2])/(10*e^8) + (7*d^2*ArcTan[(e*
x)/Sqrt[d^2 - e^2*x^2]])/(2*e^8)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((e*f + d*g)*(2*p
+ 3) + 2*e*g*(p + 1)*x)*((a + c*x^2)^(p + 1)/(2*c*(p + 1)*(2*p + 3))), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 - 1)*(a + c*x^2)^(p + 1)*((a*(e*f + d*g) - (c*d*f - a*e*g)*x)/(2*a*c*(p + 1))), x] - Dist[1/(2*a*c*(p + 1)),
Int[(d + e*x)^(m - 2)*(a + c*x^2)^(p + 1)*Simp[a*e*(e*f*(m - 1) + d*g*m) - c*d^2*f*(2*p + 3) + e*(a*e*g*m - c*
d*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ
[m, 1] && (EqQ[d, 0] || (EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 864

Int[((x_)^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(x/e))*(a + c*x
^2)^(p - 1), x] /; FreeQ[{a, c, d, e, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||
  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2]))

Rubi steps

\begin {align*} \int \frac {x^7}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx &=\int \frac {x^7 (d-e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx\\ &=\frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {x^5 \left (6 d^3-7 d^2 e x\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2 e^2}\\ &=\frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^4 (6 d-7 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {x^3 \left (24 d^5-35 d^4 e x\right )}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^4 e^4}\\ &=\frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^4 (6 d-7 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x^2 (24 d-35 e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {x \left (48 d^7-105 d^6 e x\right )}{\sqrt {d^2-e^2 x^2}} \, dx}{15 d^6 e^6}\\ &=\frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^4 (6 d-7 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x^2 (24 d-35 e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {(32 d-35 e x) \sqrt {d^2-e^2 x^2}}{10 e^8}+\frac {\left (7 d^2\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{2 e^7}\\ &=\frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^4 (6 d-7 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x^2 (24 d-35 e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {(32 d-35 e x) \sqrt {d^2-e^2 x^2}}{10 e^8}+\frac {\left (7 d^2\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^7}\\ &=\frac {x^6 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^4 (6 d-7 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x^2 (24 d-35 e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {(32 d-35 e x) \sqrt {d^2-e^2 x^2}}{10 e^8}+\frac {7 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^8}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.52, size = 148, normalized size = 0.91 \begin {gather*} \frac {\frac {e \sqrt {d^2-e^2 x^2} \left (96 d^6-9 d^5 e x-249 d^4 e^2 x^2-4 d^3 e^3 x^3+176 d^2 e^4 x^4+15 d e^5 x^5-15 e^6 x^6\right )}{(d-e x)^2 (d+e x)^3}+105 d^2 \sqrt {-e^2} \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right )}{30 e^9} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^7/((d + e*x)*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

((e*Sqrt[d^2 - e^2*x^2]*(96*d^6 - 9*d^5*e*x - 249*d^4*e^2*x^2 - 4*d^3*e^3*x^3 + 176*d^2*e^4*x^4 + 15*d*e^5*x^5
 - 15*e^6*x^6))/((d - e*x)^2*(d + e*x)^3) + 105*d^2*Sqrt[-e^2]*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]])/(30
*e^9)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(650\) vs. \(2(142)=284\).
time = 0.09, size = 651, normalized size = 4.02

method result size
risch \(\frac {\left (-e x +2 d \right ) \sqrt {-e^{2} x^{2}+d^{2}}}{2 e^{8}}+\frac {7 d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{7} \sqrt {e^{2}}}+\frac {773 d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{240 e^{9} \left (x +\frac {d}{e}\right )}+\frac {31 d^{2} \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d \left (x -\frac {d}{e}\right ) e}}{48 e^{9} \left (x -\frac {d}{e}\right )}+\frac {d^{3} \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d \left (x -\frac {d}{e}\right ) e}}{24 e^{10} \left (x -\frac {d}{e}\right )^{2}}-\frac {7 d^{3} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{15 e^{10} \left (x +\frac {d}{e}\right )^{2}}+\frac {d^{4} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{20 e^{11} \left (x +\frac {d}{e}\right )^{3}}\) \(295\)
default \(\frac {-\frac {x^{5}}{2 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {5 d^{2} \left (\frac {x^{3}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\frac {x}{e^{2} \sqrt {-e^{2} x^{2}+d^{2}}}-\frac {\arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{2} \sqrt {e^{2}}}}{e^{2}}\right )}{2 e^{2}}}{e}-\frac {d \left (-\frac {x^{4}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {4 d^{2} \left (\frac {x^{2}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {2 d^{2}}{3 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}\right )}{e^{2}}\right )}{e^{2}}+\frac {d^{2} \left (\frac {x^{3}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\frac {x}{e^{2} \sqrt {-e^{2} x^{2}+d^{2}}}-\frac {\arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{2} \sqrt {e^{2}}}}{e^{2}}\right )}{e^{3}}-\frac {d^{3} \left (\frac {x^{2}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {2 d^{2}}{3 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}\right )}{e^{4}}+\frac {d^{4} \left (\frac {x}{2 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {d^{2} \left (\frac {x}{3 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {2 x}{3 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{2}}\right )}{e^{5}}-\frac {d^{5}}{3 e^{8} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {d^{6} \left (\frac {x}{3 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {2 x}{3 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{7}}-\frac {d^{7} \left (-\frac {1}{5 d e \left (x +\frac {d}{e}\right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}+\frac {4 e \left (-\frac {-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e}{6 d^{2} e^{2} \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}-\frac {-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e}{3 e^{2} d^{4} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{5 d}\right )}{e^{8}}\) \(651\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/e*(-1/2*x^5/e^2/(-e^2*x^2+d^2)^(3/2)+5/2*d^2/e^2*(1/3*x^3/e^2/(-e^2*x^2+d^2)^(3/2)-1/e^2*(x/e^2/(-e^2*x^2+d^
2)^(1/2)-1/e^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2)))))-d/e^2*(-x^4/e^2/(-e^2*x^2+d^2)^(3/2)+
4*d^2/e^2*(x^2/e^2/(-e^2*x^2+d^2)^(3/2)-2/3*d^2/e^4/(-e^2*x^2+d^2)^(3/2)))+d^2/e^3*(1/3*x^3/e^2/(-e^2*x^2+d^2)
^(3/2)-1/e^2*(x/e^2/(-e^2*x^2+d^2)^(1/2)-1/e^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))))-d^3/e^
4*(x^2/e^2/(-e^2*x^2+d^2)^(3/2)-2/3*d^2/e^4/(-e^2*x^2+d^2)^(3/2))+d^4/e^5*(1/2*x/e^2/(-e^2*x^2+d^2)^(3/2)-1/2*
d^2/e^2*(1/3*x/d^2/(-e^2*x^2+d^2)^(3/2)+2/3*x/d^4/(-e^2*x^2+d^2)^(1/2)))-1/3*d^5/e^8/(-e^2*x^2+d^2)^(3/2)+d^6/
e^7*(1/3*x/d^2/(-e^2*x^2+d^2)^(3/2)+2/3*x/d^4/(-e^2*x^2+d^2)^(1/2))-d^7/e^8*(-1/5/d/e/(x+d/e)/(-(x+d/e)^2*e^2+
2*d*e*(x+d/e))^(3/2)+4/5*e/d*(-1/6*(-2*e^2*(x+d/e)+2*d*e)/d^2/e^2/(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(3/2)-1/3/e^2
/d^4*(-2*e^2*(x+d/e)+2*d*e)/(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 265, normalized size = 1.64 \begin {gather*} \frac {d^{6}}{5 \, {\left ({\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} x e^{9} + {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d e^{8}\right )}} - \frac {x^{5} e^{\left (-3\right )}}{2 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}}} + \frac {d x^{4} e^{\left (-4\right )}}{{\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}}} + \frac {25 \, d^{2} x^{3} e^{\left (-5\right )}}{2 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}}} - \frac {65 \, d^{3} x^{2} e^{\left (-6\right )}}{6 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}}} - \frac {164 \, d^{4} x e^{\left (-7\right )}}{15 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}}} + \frac {53 \, d^{5} e^{\left (-8\right )}}{6 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}}} + \frac {7}{2} \, d^{2} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-8\right )} - \frac {7 \, d x^{2} e^{\left (-6\right )}}{6 \, \sqrt {-x^{2} e^{2} + d^{2}}} + \frac {229 \, d^{2} x e^{\left (-7\right )}}{30 \, \sqrt {-x^{2} e^{2} + d^{2}}} - \frac {14 \, d^{3} e^{\left (-8\right )}}{3 \, \sqrt {-x^{2} e^{2} + d^{2}}} - \frac {7}{6} \, \sqrt {-x^{2} e^{2} + d^{2}} d e^{\left (-8\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="maxima")

[Out]

1/5*d^6/((-x^2*e^2 + d^2)^(3/2)*x*e^9 + (-x^2*e^2 + d^2)^(3/2)*d*e^8) - 1/2*x^5*e^(-3)/(-x^2*e^2 + d^2)^(3/2)
+ d*x^4*e^(-4)/(-x^2*e^2 + d^2)^(3/2) + 25/2*d^2*x^3*e^(-5)/(-x^2*e^2 + d^2)^(3/2) - 65/6*d^3*x^2*e^(-6)/(-x^2
*e^2 + d^2)^(3/2) - 164/15*d^4*x*e^(-7)/(-x^2*e^2 + d^2)^(3/2) + 53/6*d^5*e^(-8)/(-x^2*e^2 + d^2)^(3/2) + 7/2*
d^2*arcsin(x*e/d)*e^(-8) - 7/6*d*x^2*e^(-6)/sqrt(-x^2*e^2 + d^2) + 229/30*d^2*x*e^(-7)/sqrt(-x^2*e^2 + d^2) -
14/3*d^3*e^(-8)/sqrt(-x^2*e^2 + d^2) - 7/6*sqrt(-x^2*e^2 + d^2)*d*e^(-8)

________________________________________________________________________________________

Fricas [A]
time = 3.34, size = 255, normalized size = 1.57 \begin {gather*} \frac {96 \, d^{2} x^{5} e^{5} + 96 \, d^{3} x^{4} e^{4} - 192 \, d^{4} x^{3} e^{3} - 192 \, d^{5} x^{2} e^{2} + 96 \, d^{6} x e + 96 \, d^{7} - 210 \, {\left (d^{2} x^{5} e^{5} + d^{3} x^{4} e^{4} - 2 \, d^{4} x^{3} e^{3} - 2 \, d^{5} x^{2} e^{2} + d^{6} x e + d^{7}\right )} \arctan \left (-\frac {{\left (d - \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )}}{x}\right ) - {\left (15 \, x^{6} e^{6} - 15 \, d x^{5} e^{5} - 176 \, d^{2} x^{4} e^{4} + 4 \, d^{3} x^{3} e^{3} + 249 \, d^{4} x^{2} e^{2} + 9 \, d^{5} x e - 96 \, d^{6}\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{30 \, {\left (x^{5} e^{13} + d x^{4} e^{12} - 2 \, d^{2} x^{3} e^{11} - 2 \, d^{3} x^{2} e^{10} + d^{4} x e^{9} + d^{5} e^{8}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="fricas")

[Out]

1/30*(96*d^2*x^5*e^5 + 96*d^3*x^4*e^4 - 192*d^4*x^3*e^3 - 192*d^5*x^2*e^2 + 96*d^6*x*e + 96*d^7 - 210*(d^2*x^5
*e^5 + d^3*x^4*e^4 - 2*d^4*x^3*e^3 - 2*d^5*x^2*e^2 + d^6*x*e + d^7)*arctan(-(d - sqrt(-x^2*e^2 + d^2))*e^(-1)/
x) - (15*x^6*e^6 - 15*d*x^5*e^5 - 176*d^2*x^4*e^4 + 4*d^3*x^3*e^3 + 249*d^4*x^2*e^2 + 9*d^5*x*e - 96*d^6)*sqrt
(-x^2*e^2 + d^2))/(x^5*e^13 + d*x^4*e^12 - 2*d^2*x^3*e^11 - 2*d^3*x^2*e^10 + d^4*x*e^9 + d^5*e^8)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{7}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {5}{2}} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(e*x+d)/(-e**2*x**2+d**2)**(5/2),x)

[Out]

Integral(x**7/((-(-d + e*x)*(d + e*x))**(5/2)*(d + e*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="giac")

[Out]

integrate(x^7/((-x^2*e^2 + d^2)^(5/2)*(x*e + d)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^7}{{\left (d^2-e^2\,x^2\right )}^{5/2}\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/((d^2 - e^2*x^2)^(5/2)*(d + e*x)),x)

[Out]

int(x^7/((d^2 - e^2*x^2)^(5/2)*(d + e*x)), x)

________________________________________________________________________________________